style: html to md syntax
This commit is contained in:
@@ -8,13 +8,13 @@ NeRF 想做这样一件事,不需要中间三维重建的过程,仅根据位
|
||||
|
||||

|
||||
|
||||
你可以看到,这 100 张图片是对一个乐高推土机的多角度拍摄结果。我们需要的是一个可<strong>以获取这个推土机在任意角度下拍摄的图片</strong>的模型。如图所示:
|
||||
你可以看到,这 100 张图片是对一个乐高推土机的多角度拍摄结果。我们需要的是一个可**以获取这个推土机在任意角度下拍摄的图片**的模型。如图所示:
|
||||
|
||||

|
||||
|
||||
现在来看 NeRF 网络:
|
||||
|
||||
在 NeRF 中,我们把空间<strong>认为是一个个的小方块叠成的空间</strong>(可以理解为 MC)每一个方块有以下属性:
|
||||
在 NeRF 中,我们把空间**认为是一个个的小方块叠成的空间**(可以理解为 MC)每一个方块有以下属性:
|
||||
|
||||
- 3 个位置坐标(x,y,z)
|
||||
- 透明度$\sigma$
|
||||
@@ -24,27 +24,27 @@ NeRF 想做这样一件事,不需要中间三维重建的过程,仅根据位
|
||||
|
||||
## 得到模型
|
||||
|
||||
我们需要的是每个视角下的图片,可以理解为从一个视角发射<strong>光线</strong>,<u>一根光线对应一个像素点</u>。这些光线穿透路径上的所有方块,把这些方块上的属性信息以某种方式累计,就能得到这个像素的颜色。这是 一个已有的公式,只要我们获得每个小方块的颜色信息和不透明度,我们就能知道这个角度下的视图。(这个我们后面介绍)
|
||||
我们需要的是每个视角下的图片,可以理解为从一个视角发射**光线**,<u>一根光线对应一个像素点</u>。这些光线穿透路径上的所有方块,把这些方块上的属性信息以某种方式累计,就能得到这个像素的颜色。这是 一个已有的公式,只要我们获得每个小方块的颜色信息和不透明度,我们就能知道这个角度下的视图。(这个我们后面介绍)
|
||||
|
||||
现在的难点在于:我们不知道<strong>每个小方块的颜色信息</strong>(因为颜色会随着观察角度变化)。众所周知,算法解决不了的问题就扔给神经网络试试啦~
|
||||
现在的难点在于:我们不知道**每个小方块的颜色信息**(因为颜色会随着观察角度变化)。众所周知,算法解决不了的问题就扔给神经网络试试啦~
|
||||
|
||||
<strong>为了获取根据角度变化而变化的颜色信息,我们选择了神经网络。</strong>
|
||||
**为了获取根据角度变化而变化的颜色信息,我们选择了神经网络。**
|
||||
|
||||
<strong>这个网络的输入是:</strong>
|
||||
**这个网络的输入是:**
|
||||
|
||||
- 小方块的位置坐标(x,y,z)
|
||||
- 观察角度(以二维坐标表示两个偏转角)
|
||||
|
||||
<strong>这个网络的输出是:</strong>
|
||||
**这个网络的输出是:**
|
||||
|
||||
- 对应的小方块的 RGB 信息
|
||||
- 不透明度
|
||||
|
||||

|
||||
|
||||
在这里,作者选择了最简单的 MLP,因此,<strong>这是一个输入为 5 维,输出为 4 维向量</strong>($R,G,B,\sigma$)的简单网络,值得注意的是,不透明度与观察角度无关,这里在网络中进行了特殊处理,让这个值与后两维无关。
|
||||
在这里,作者选择了最简单的 MLP,因此,**这是一个输入为 5 维,输出为 4 维向量**($R,G,B,\sigma$)的简单网络,值得注意的是,不透明度与观察角度无关,这里在网络中进行了特殊处理,让这个值与后两维无关。
|
||||
|
||||
<strong>现在我们能够输入坐标和视角信息得到小方块的颜色和不透明度,我们就可以对光线穿过的小方块进行计算了。</strong>
|
||||
**现在我们能够输入坐标和视角信息得到小方块的颜色和不透明度,我们就可以对光线穿过的小方块进行计算了。**
|
||||
|
||||
## 进行渲染
|
||||
|
||||
@@ -54,9 +54,9 @@ NeRF 想做这样一件事,不需要中间三维重建的过程,仅根据位
|
||||
|
||||
这个公式对光线上的所有小方块的颜色进行加权求和,权重是关于不透明度$\sigma$的一个函数$T(\sigma)$,不透明度在[0,1]之间,越不透明这个值越大。也就是越不透明,占的颜色比重越高,比如空气的$\sigma$就接近于 0,乐高本身就接近 1。而求和的结果就是这个光线对应像素的颜色。
|
||||
|
||||
这里展开说一下$T(\sigma)$,我们把不透明度理解为光线在这个小方块被阻止的概率,越不透明,越容易阻挡光线,而光线一旦被阻挡,就不用计算后面的小方块颜色了。因此,我们的$T(\sigma)$就表示<strong>光线能够行进到这个小方块的概率</strong>,也就是这点之前所有小方块的$(1-\sigma)$的乘积。
|
||||
这里展开说一下$T(\sigma)$,我们把不透明度理解为光线在这个小方块被阻止的概率,越不透明,越容易阻挡光线,而光线一旦被阻挡,就不用计算后面的小方块颜色了。因此,我们的$T(\sigma)$就表示**光线能够行进到这个小方块的概率**,也就是这点之前所有小方块的$(1-\sigma)$的乘积。
|
||||
|
||||
这段要仔细看和推导,第一遍不容易直接懂。顺带一提,我们的<strong>小方块</strong>学名叫<strong>体素</strong>,<del>为了显得我们更专业一点以后就叫它体素罢</del>
|
||||
这段要仔细看和推导,第一遍不容易直接懂。顺带一提,我们的**小方块**学名叫**体素**,<del>为了显得我们更专业一点以后就叫它体素罢</del>
|
||||
|
||||

|
||||
|
||||
@@ -84,7 +84,7 @@ NeRF 想做这样一件事,不需要中间三维重建的过程,仅根据位
|
||||
|
||||
我们使用了两个网络:粗网络和精细网络。
|
||||
|
||||
粗网络就是上述采样方法用的普通网络,而<strong>粗网络输出的不透明度值会被作为一个概率分布函数</strong>,精细网络根据这个概率分布在光线上进行采样,不透明度越大的点,它的邻域被采样的概率越大,也就实现了我们要求的在实体上多采样,空气中少采样。最后精细网络输出作为结果,因此粗网络可以只求不透明度,无视颜色信息。
|
||||
粗网络就是上述采样方法用的普通网络,而**粗网络输出的不透明度值会被作为一个概率分布函数**,精细网络根据这个概率分布在光线上进行采样,不透明度越大的点,它的邻域被采样的概率越大,也就实现了我们要求的在实体上多采样,空气中少采样。最后精细网络输出作为结果,因此粗网络可以只求不透明度,无视颜色信息。
|
||||
|
||||

|
||||
|
||||
|
||||
Reference in New Issue
Block a user