style: html to md syntax
This commit is contained in:
@@ -58,7 +58,7 @@ print(type(img2))
|
||||
'''
|
||||
```
|
||||
|
||||
首先用读取图片,查看一下图片的类型为 PIL.JpegImagePlugin.JpegImageFile,这里需要注意,<strong>PIL.JpegImagePlugin.JpegImageFile 类是 PIL.Image.Image 类的子类</strong>。然后,用 transforms.ToTensor() 将 PIL.Image 转换为 Tensor。最后,再将 Tensor 转换回 PIL.Image。
|
||||
首先用读取图片,查看一下图片的类型为 PIL.JpegImagePlugin.JpegImageFile,这里需要注意,**PIL.JpegImagePlugin.JpegImageFile 类是 PIL.Image.Image 类的子类**。然后,用 transforms.ToTensor() 将 PIL.Image 转换为 Tensor。最后,再将 Tensor 转换回 PIL.Image。
|
||||
|
||||
## 对 PIL.Image 和 Tensor 进行变换
|
||||
|
||||
@@ -202,7 +202,7 @@ display(img2)
|
||||
|
||||
标准化是指每一个数据点减去所在通道的平均值,再除以所在通道的标准差,数学的计算公式:output=(input−mean)/std
|
||||
|
||||
而对图像进行标准化,就是对图像的每个通道利用均值和标准差进行正则化。这样做的目的,是<strong>为了保证数据集中所有的图像分布都相似,这样在训练的时候更容易收敛,既加快了训练速度,也提高了训练效果</strong>。
|
||||
而对图像进行标准化,就是对图像的每个通道利用均值和标准差进行正则化。这样做的目的,是**为了保证数据集中所有的图像分布都相似,这样在训练的时候更容易收敛,既加快了训练速度,也提高了训练效果**。
|
||||
|
||||
让我来解释一下:首先,标准化是一个常规做法,可以理解为无脑进行标准化后再训练的效果,大概率要好于不进行标准化。
|
||||
|
||||
|
||||
Reference in New Issue
Block a user