style: html to md syntax
This commit is contained in:
@@ -84,7 +84,7 @@
|
||||
- 最优解 (Optimal Solution)
|
||||
|
||||
- 在所有解决方案中路径成本最低的解决方案。
|
||||
- 在搜索过程中,数据通常存储在<strong>节点 (Node)</strong> 中,节点是一种包含以下数据的数据结构:
|
||||
- 在搜索过程中,数据通常存储在**节点 (Node)** 中,节点是一种包含以下数据的数据结构:
|
||||
|
||||
- 状态——state
|
||||
- 其父节点,通过该父节点生成当前节点——parent node
|
||||
@@ -312,6 +312,6 @@ def remove(self):
|
||||
|
||||
- 深度限制的极大极小算法 (Depth-Limited Minimax)
|
||||
|
||||
- 总共有$255168$个可能的井字棋游戏,以及有$10^{29000}$个可能的国际象棋中游戏。到目前为止,最小最大算法需要生成从某个点到<strong>终端条件</strong>的所有假设游戏状态。虽然计算所有的井字棋游戏状态对现代计算机来说并不是一个挑战,但目前用来计算国际象棋是不可能的。
|
||||
- 总共有$255168$个可能的井字棋游戏,以及有$10^{29000}$个可能的国际象棋中游戏。到目前为止,最小最大算法需要生成从某个点到**终端条件**的所有假设游戏状态。虽然计算所有的井字棋游戏状态对现代计算机来说并不是一个挑战,但目前用来计算国际象棋是不可能的。
|
||||
|
||||
- 深度限制的 Minimax 算法在停止之前只考虑预先定义的移动次数,而从未达到终端状态。然而,这不允许获得每个动作的精确值,因为假设的游戏还没有结束。为了解决这个问题,深度限制 Minimax 依赖于一个评估函数,该函数从给定状态估计游戏的预期效用,或者换句话说,为状态赋值。例如,在国际象棋游戏中,效用函数会将棋盘的当前配置作为输入,尝试评估其预期效用(基于每个玩家拥有的棋子及其在棋盘上的位置),然后返回一个正值或负值,表示棋盘对一个玩家对另一个玩家的有利程度。这些值可以用来决定正确的操作,并且评估函数越好,依赖它的 Minimax 算法就越好。
|
||||
|
||||
Reference in New Issue
Block a user