2.4 KiB
基本概念介绍
前面已经介绍过,强化学习难入坑的的原因之一就在于概念繁多。下面将进行基本概念的介绍,本章节最好能够理解,不理解也没有关系,但是建议作为参考章节常看常新。后续章节不理解某个概念时,便回来看看,相信一定能够做到常看常新、从而加深你对于概念的理解。下面将进行三个部分的介绍,分别为强化学习的基本过程、强化学习的基本要素、强化学习的目标。
强化学习的基本过程
前面已经介绍过强化学习的核心过程,在于智能体与环境进行交互,通过给出的奖励反馈作为信号学习的过程。简单地用图片表示如下:
正是在这个与环境的交互过程中,智能体不断得到反馈,目标就是尽可能地让环境反馈的奖励足够大。
强化学习的基本要素
为了便于理解,我们引入任天堂经典游戏——新超级马里奥兄弟U,作为辅助理解的帮手。作为一个2D横向的闯关游戏,它的状态空间和动作空间无疑是简单的。
1.智能体(Agent):它与环境交互,可以观察到环境并且做出决策,然后反馈给环境。在马里奥游戏中,能操控的这个马里奥本体就是智能体。
2.环境(Environment):智能体存在并且与其交互的世界。新超级马里奥兄弟U本身,就是一个环境。
3.状态(State):对环境当前所处环境的全部描述,记为 $S$。在马里奥游戏中,上面的这张图片就是在本时刻的状态。
4.动作(Action):智能体可以采取的行为,记为 $a$。在马里奥游戏中,马里奥能采取的动作只有:上、左、右三个。这属于离散动作,动作数量是有限的。而在机器人控制中,机器人能采取的动作是无限的,这属于连续动作。
5.策略(Policy):智能体采取动作的规则,分为确定性策略与随机性策略。确定性策略代表在相同的状态下,智能体所输出的动作是唯一的。而随机性策略哪怕是在相同的状态下,输出的动作也有可能不一样。这么说有点过于抽象了,那么请思考这个问题:在下面这张图的环境中,如果执行确定性策略会发生什么?

