fix: http to https
This commit is contained in:
@@ -6,7 +6,7 @@ Wide&Deep模型的提出不仅综合了“记忆能力”和“泛化能力”
|
||||
|
||||
这个模型的结构是这个样子的:
|
||||
<div align=center>
|
||||
<img src="http://ryluo.oss-cn-chengdu.aliyuncs.com/图片dcn.png" style="zoom:67%;" />
|
||||
<img src="https://ryluo.oss-cn-chengdu.aliyuncs.com/图片dcn.png" style="zoom:67%;" />
|
||||
</div>
|
||||
|
||||
这个模型的结构也是比较简洁的, 从下到上依次为:Embedding和Stacking层, Cross网络层与Deep网络层并列, 以及最后的输出层。下面也是一一为大家剖析。
|
||||
@@ -34,7 +34,7 @@ $$
|
||||
$$
|
||||
可以看到, 交叉层的二阶部分非常类似PNN提到的外积操作, 在此基础上增加了外积操作的权重向量$w_l$, 以及原输入向量$x_l$和偏置向量$b_l$。 交叉层的可视化如下:
|
||||
|
||||
<div align=center> <img src="http://ryluo.oss-cn-chengdu.aliyuncs.com/图片cross.png" style="zoom:67%;" />
|
||||
<div align=center> <img src="https://ryluo.oss-cn-chengdu.aliyuncs.com/图片cross.png" style="zoom:67%;" />
|
||||
</div>
|
||||
|
||||
可以看到, 每一层增加了一个$n$维的权重向量$w_l$(n表示输入向量维度), 并且在每一层均保留了输入向量, 因此输入和输出之间的变化不会特别明显。关于这一层, 原论文里面有个具体的证明推导Cross Network为啥有效, 不过比较复杂,这里我拿一个式子简单的解释下上面这个公式的伟大之处:
|
||||
@@ -139,7 +139,7 @@ def DCN(linear_feature_columns, dnn_feature_columns):
|
||||
|
||||
下面是一个通过keras画的模型结构图,为了更好的显示,类别特征都只是选择了一小部分,画图的代码也在github中。
|
||||
|
||||
<div align=center> <img src="http://ryluo.oss-cn-chengdu.aliyuncs.com/图片DCN.png" alt="image-20210308143101261" style="zoom: 50%;" />
|
||||
<div align=center> <img src="https://ryluo.oss-cn-chengdu.aliyuncs.com/图片DCN.png" alt="image-20210308143101261" style="zoom: 50%;" />
|
||||
</div>
|
||||
|
||||
## 思考
|
||||
|
||||
Reference in New Issue
Block a user