fix: http to https
This commit is contained in:
@@ -7,7 +7,7 @@
|
||||
首先我们从推荐系统架构出发,一种分法是将整个推荐系统架构分为召回、粗排、精排、重排、混排等模块。它的分解方法是从一份数据如何从生产出来,到线上服务完整顺序的一个流程。因为在不同环节,我们一般会考虑不同的算法,所以这种角度出发我们来研究推荐系统主流的算法技术栈。
|
||||
|
||||
<div align=center>
|
||||
<img src="http://ryluo.oss-cn-chengdu.aliyuncs.com/图片image-20220409211354342.png" alt="在这里插入图片描述" style="zoom:90%;" />
|
||||
<img src="https://ryluo.oss-cn-chengdu.aliyuncs.com/图片image-20220409211354342.png" alt="在这里插入图片描述" style="zoom:90%;" />
|
||||
</div>
|
||||
|
||||
为了帮助新手在后文方便理解,首先简单介绍这些模块的功能主要是:
|
||||
@@ -22,7 +22,7 @@
|
||||
首先是推荐系统的物料库,这部分内容里,算法主要体现在如何绘制一个用户画像和商品画像。这个环节是推荐系统架构的基础设施,一般可能新用户/商品进来,或者每周定期会重新一次整个物料库,计算其中信息,为用户打上标签,计算统计信息,为商品做内容理解等内容。其中用户画像是大家比较容易理解的,比如用户年龄、爱好通常APP会通过注册界面收集这些信息。而商品画像形式就非常多了,比如淘宝主要推荐商品,抖音主要是短视频,所以大家的物料形式比较多,内容、质量差异也比较大,所以内容画像各家的做法也不同,当前比较主流的都会涉及到一个多模态信息内容理解。下面我贴了一个微信看一看的内容画像框架,然后我们来介绍下在这一块主要使用的算法技术。
|
||||
|
||||
<div align=center>
|
||||
<img src="http://ryluo.oss-cn-chengdu.aliyuncs.com/图片image-20220410143333692.png" alt="在这里插入图片描述" style="zoom:90%;" />
|
||||
<img src="https://ryluo.oss-cn-chengdu.aliyuncs.com/图片image-20220410143333692.png" alt="在这里插入图片描述" style="zoom:90%;" />
|
||||
</div>
|
||||
|
||||
一般推荐系统会加入多模态的一个内容理解。我们用短视频形式举个例子,假设用户拍摄了一条短视频,上传到了平台,从推荐角度看,首先我们有的信息是这条短视频的作者、长度、作者为它选择的标签、时间戳这些信息。但是这对于推荐来说是远远不够的,首先作者打上的标签不一定准确反映作品,原因可能是我们模型的语义空间可能和作者/现实世界不一致。其次我们需要更多维度的特征,比如有些用户喜欢看小姐姐跳舞,那我希望能够判断一条视频中是否有小姐姐,这就涉及到封面图的基于CV的内容抽取或者整个视频的抽取;再比如作品的标题一般能够反映主题信息,除了很多平台常用的用“#”加上一个标签以外,我们也希望能够通过标题抽取出基于NLP的信息。还有更多的维度可以考虑:封面图多维度的多媒体特征体系,包括人脸识别,人脸embedding,标签,一二级分类,视频embedding表示,水印,OCR识别,清晰度,低俗色情,敏感信息等多种维度。
|
||||
@@ -58,7 +58,7 @@
|
||||
推荐系统的召回阶段可以理解为根据用户的历史行为数据,为用户在海量的信息中粗选一批待推荐的内容,挑选出一个小的候选集的过程。粗排用到的很多技术与召回重合,所以放在一起讲,粗排也不是必需的环节,它的功能对召回的结果进行个粗略的排序,在保证一定精准的前提下,进一步减少往后传送的物品数量,这就是粗排的作用。
|
||||
|
||||
<div align=center>
|
||||
<img src="http://ryluo.oss-cn-chengdu.aliyuncs.com/图片image-20220410000221817.png" alt="在这里插入图片描述" style="zoom:90%;" />
|
||||
<img src="https://ryluo.oss-cn-chengdu.aliyuncs.com/图片image-20220410000221817.png" alt="在这里插入图片描述" style="zoom:90%;" />
|
||||
</div>
|
||||
|
||||
召回模块面对几百上千万的推荐池物料规模,候选集十分庞大。由于后续有排序模块作为保障,故不需要十分准确,但必须保证不要遗漏和低延迟。目前主要通过多路召回来实现,一方面各路可以并行计算,另一方面取长补短。可以看到各类同类竞品的系统虽然细节上多少存在差异,但不约而同的采取了多路召回的架构,这类设计考虑如下几点问题:
|
||||
@@ -112,7 +112,7 @@
|
||||
排序模型是推荐系统中涵盖的研究方向最多,有非常多的子领域值得研究探索,这也是推荐系统中技术含量最高的部分,毕竟它是直接面对用户,产生的结果对用户影响最大的一层。目前精排层深度学习已经一统天下了,这是王喆老师《深度学习推荐算法》书中的精排层模型演化线路。具体来看分为DNN、Wide&Deep两大块,实际深入还有序列建模,以及没有提到的多任务建模都是工业界非常常用的,所以我们接下来具体谈论其中每一块的技术栈。
|
||||
|
||||
<div align=center>
|
||||
<img src="http://ryluo.oss-cn-chengdu.aliyuncs.com/图片image-20220410234144149.png" alt="在这里插入图片描述" style="zoom:90%;" />
|
||||
<img src="https://ryluo.oss-cn-chengdu.aliyuncs.com/图片image-20220410234144149.png" alt="在这里插入图片描述" style="zoom:90%;" />
|
||||
</div>
|
||||
|
||||
#### 特征交叉模型
|
||||
|
||||
Reference in New Issue
Block a user