Update 4.2机器学习(AI)快速入门(quick start).md

This commit is contained in:
46135621
2023-04-20 00:00:16 +08:00
committed by GitHub
parent 72f0ed87f8
commit 4aa20b3ef5

View File

@@ -84,19 +84,19 @@
```python
def estimate_house_sales_price(num_of_bedrooms, sqft, neighborhood):
price = 0<em> # In my area, the average house costs $200 per sqft</em>
price = 0 # In my area, the average house costs $200 per sqft
price_per_sqft = 200 if neighborhood == "hipsterton":
<em> # but some areas cost a bit more</em>
# but some areas cost a bit more
price_per_sqft = 400 elif neighborhood == "skid row":
<em> # and some areas cost less</em>
price_per_sqft = 100 <em># start with a base price estimate based on how big the place is</em>
price = price_per_sqft * sqft <em># now adjust our estimate based on the number of bedrooms</em>
# and some areas cost less
price_per_sqft = 100 # start with a base price estimate based on how big the place is
price = price_per_sqft * sqft # now adjust our estimate based on the number of bedrooms
if num_of_bedrooms == 0:
<em># Studio apartments are cheap</em>
# Studio apartments are cheap
price = price20000
else:
<em> # places with more bedrooms are usually</em>
<em> # more valuable</em>
# places with more bedrooms are usually
# more valuable
price = price + (num_of_bedrooms * 1000) return price
```
@@ -212,9 +212,9 @@ def estimate_house_sales_price(num_of_bedrooms, sqft, neighborhood):
```python
def estimate_house_sales_price(num_of_bedrooms, sqft, neighborhood):
price = 0# a little pinch of this
price += num_of_bedrooms * <strong>0.123</strong># and a big pinch of that
price += sqft * <strong>0.41</strong># maybe a handful of this
price += neighborhood * <strong>0.57</strong>
price += num_of_bedrooms * 0.123# and a big pinch of that
price += sqft * 0.41# maybe a handful of this
price += neighborhood * 0.57
return price
```
@@ -328,10 +328,10 @@ print('y_pred=',y_test.data)
请注意我们的神经网络现在有了两个输出而不仅仅是一个房子的价格。第一个输出会预测图片是「8」的概率而第二个则输出不是「8」的概率。概括地说我们就可以依靠多种不同的输出利用神经网络把要识别的物品进行分组。
```python
<strong>model = Sequential([Dense(32, input_shape=(784,)), </strong>
<strong> Activation('relu'),Dense(10),Activation('softmax')])</strong># 你也可以通过 .add() 方法简单地添加层:<strong> model = Sequential() </strong>
<strong> model.add(Dense(32, input_dim=784)) </strong>
<strong> model.add(Activation('relu'))# 激活函数,你可以理解为加上这个东西可以让他效果更好</strong>
model = Sequential([Dense(32, input_shape=(784,)),
Activation('relu'),Dense(10),Activation('softmax')])# 你也可以通过 .add() 方法简单地添加层: model = Sequential()
model.add(Dense(32, input_dim=784))
model.add(Activation('relu'))# 激活函数,你可以理解为加上这个东西可以让他效果更好
```
虽然我们的神经网络要比上次大得多(这次有 324 个输入,上次只有 3 个!),但是现在的计算机一眨眼的功夫就能够对这几百个节点进行运算。当然,你的手机也可以做到。