fix: dead link
This commit is contained in:
@@ -239,7 +239,7 @@ $$
|
||||
|
||||
### 编程实践
|
||||
|
||||
下面我们通过kaggle上的一个ctr预测的比赛来看一下GBDT+LR模型部分的编程实践, [数据来源](https://github.com/zhongqiangwu960812/AI-RecommenderSystem/tree/master/GBDT%2BLR/data)
|
||||
下面我们通过kaggle上的一个ctr预测的比赛来看一下GBDT+LR模型部分的编程实践, [数据来源](https://github.com/zhongqiangwu960812/AI-RecommenderSystem/tree/master/Rank/GBDT%2BLR/data)
|
||||
|
||||
我们回顾一下上面的模型架构, 首先是要训练GBDT模型, GBDT的实现一般可以使用xgboost, 或者lightgbm。训练完了GBDT模型之后, 我们需要预测出每个样本落在了哪棵树上的哪个节点上, 然后通过one-hot就会得到一些新的离散特征, 这和原来的特征进行合并组成新的数据集, 然后作为逻辑回归的输入,最后通过逻辑回归模型得到结果。
|
||||
|
||||
|
||||
@@ -151,6 +151,6 @@ def DeepFM(linear_feature_columns, dnn_feature_columns):
|
||||
**参考资料**
|
||||
- [论文原文](https://arxiv.org/pdf/1703.04247.pdf)
|
||||
- [deepctr](https://github.com/shenweichen/DeepCTR)
|
||||
- [FM](https://github.com/datawhalechina/team-learning-rs/blob/master/RecommendationSystemFundamentals/04%20FM.md)
|
||||
- [FM](https://github.com/datawhalechina/fun-rec/blob/master/docs/ch02/ch2.1/ch2.1.2/FM.md)
|
||||
- [推荐系统遇上深度学习(三)--DeepFM模型理论和实践](https://www.jianshu.com/p/6f1c2643d31b)
|
||||
- [FM算法公式推导](https://blog.csdn.net/qq_32486393/article/details/103498519)
|
||||
Reference in New Issue
Block a user