# Kaolin: A Pytorch Library for Accelerating 3D Deep Learning Research
In addition we implemented a [GLTF mesh loader](https://kaolin.readthedocs.io/en/latest/modules/kaolin.io.gltf.html) that can be used to load models from [Objaverse](https://objaverse.allenai.org/objaverse-1.0) and [Objaverse-XL](https://objaverse.allenai.org/).
Check our new tutorial:
[**Load and render a GLTF file** interactively into a Jupyter notebook:](https://github.com/NVIDIAGameWorks/kaolin/blob/master/examples/tutorial/gltf_viz.ipynb)
In this file we show how to load a gltf file and fully differentiably render it with [nvdiffrast](https://nvlabs.github.io/nvdiffrast/) and [spherical gaussian for diffuse and specular lighting](https://kaolin.readthedocs.io/en/latest/modules/kaolin.render.lighting.html), using displacement mapping and other materials properties from the GLTF file.
See [change logs](https://github.com/NVIDIAGameWorks/kaolin/releases/tag/v0.15.0) for details.
## Contributing
Please review our [contribution guidelines](CONTRIBUTING.md).
## External Projects using Kaolin
* [NVIDIA Kaolin Wisp](https://github.com/NVIDIAGameWorks/kaolin-wisp):
* Use [Camera API](https://kaolin.readthedocs.io/en/latest/modules/kaolin.render.camera.html), [Structured Point Clouds](https://kaolin.readthedocs.io/en/latest/modules/kaolin.ops.spc.html) and its [rendering capabilities](https://kaolin.readthedocs.io/en/latest/modules/kaolin.render.spc.html)
* [gradSim: Differentiable simulation for system identification and visuomotor control](https://github.com/gradsim/gradsim):
* Use [DIB-R rasterizer](https://kaolin.readthedocs.io/en/latest/modules/kaolin.render.mesh.html#kaolin.render.mesh.dibr_rasterization), [obj loader](https://kaolin.readthedocs.io/en/latest/modules/kaolin.io.obj.html#kaolin.io.obj.import_mesh) and [timelapse](https://kaolin.readthedocs.io/en/latest/modules/kaolin.visualize.html#kaolin.visualize.Timelapse)
* [Learning to Predict 3D Objects with an Interpolation-based Differentiable Renderer](https://github.com/nv-tlabs/DIB-R-Single-Image-3D-Reconstruction/tree/2cfa689881145c8e0647ae8dd077e55b5a578658):
* Use [Kaolin's DIB-R rasterizer](https://kaolin.readthedocs.io/en/latest/modules/kaolin.render.mesh.html#kaolin.render.mesh.dibr_rasterization), [camera functions](https://kaolin.readthedocs.io/en/latest/modules/kaolin.render.camera.html) and [Timelapse](https://kaolin.readthedocs.io/en/latest/modules/kaolin.visualize.html#kaolin.visualize.Timelapse) for 3D checkpoints.
* [Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Surfaces](https://github.com/nv-tlabs/nglod):
* Use [SPC](https://kaolin.readthedocs.io/en/latest/modules/kaolin.ops.spc.html) conversions and [ray-tracing](https://kaolin.readthedocs.io/en/latest/modules/kaolin.render.spc.html#kaolin.render.spc.unbatched_raytrace), yielding 30x memory and 3x training time reduction.
* [Learning Deformable Tetrahedral Meshes for 3D Reconstruction](https://github.com/nv-tlabs/DefTet):
* Use [Kaolin's DefTet volumetric renderer](https://kaolin.readthedocs.io/en/latest/modules/kaolin.render.mesh.html#kaolin.render.mesh.deftet_sparse_render), [tetrahedral losses](https://kaolin.readthedocs.io/en/latest/modules/kaolin.metrics.tetmesh.html), [camera_functions](https://kaolin.readthedocs.io/en/latest/modules/kaolin.render.camera.html), [mesh operators and conversions](https://kaolin.readthedocs.io/en/latest/modules/kaolin.ops.html), [ShapeNet dataset](https://kaolin.readthedocs.io/en/latest/modules/kaolin.io.shapenet.html#kaolin.io.shapenet.ShapeNetV1), [point_to_mesh_distance](https://kaolin.readthedocs.io/en/latest/modules/kaolin.metrics.trianglemesh.html#kaolin.metrics.trianglemesh.point_to_mesh_distance) and [sided_distance](https://kaolin.readthedocs.io/en/latest/modules/kaolin.metrics.pointcloud.html#kaolin.metrics.pointcloud.sided_distance).
* [Text2Mesh](https://github.com/threedle/text2mesh):
* Use [Kaolin's rendering functions](https://kaolin.readthedocs.io/en/latest/modules/kaolin.render.mesh.html#), [camera functions](https://kaolin.readthedocs.io/en/latest/modules/kaolin.render.camera.html), and [obj](https://kaolin.readthedocs.io/en/latest/modules/kaolin.io.obj.html#kaolin.io.obj.import_mesh) and [off](https://kaolin.readthedocs.io/en/latest/modules/kaolin.io.off.html#kaolin.io.off.import_mesh) importers.
* [Flexible Isosurface Extraction for Gradient-Based Mesh Optimization (FlexiCubes)
](https://github.com/nv-tlabs/FlexiCubes):
* Use [Flexicube class](https://kaolin.readthedocs.io/en/latest/modules/kaolin.non_commercial.html#kaolin.non_commercial.FlexiCubes), [obj loader](https://kaolin.readthedocs.io/en/latest/modules/kaolin.io.obj.html), [turntable visualizer](https://kaolin.readthedocs.io/en/latest/modules/kaolin.visualize.html#kaolin.visualize.IpyTurntableVisualizer)
## Licenses
Most of Kaolin's repository is under [Apache v2.0 license](LICENSE), except under [kaolin/non_commercial](kaolin/non_commercial/) which is under [NSCL license](LICENSE.NSCL) restricted to non commercial usage for research and evaluation purposes. For example, FlexiCubes method is included under [non_commercial](kaolin/non_commercial/flexicubes/flexicubes.py).
Default `kaolin` import includes Apache-licensed components:
```
import kaolin
```
The non-commercial components need to be explicitly imported as:
```
import kaolin.non_commercial
```
## Citation
If you are using Kaolin library for your research, please cite:
```
@misc{KaolinLibrary,
author = {Fuji Tsang, Clement and Shugrina, Maria and Lafleche, Jean Francois and Takikawa, Towaki and Wang, Jiehan and Loop, Charles and Chen, Wenzheng and Jatavallabhula, Krishna Murthy and Smith, Edward and Rozantsev, Artem and Perel, Or and Shen, Tianchang and Gao, Jun and Fidler, Sanja and State, Gavriel and Gorski, Jason and Xiang, Tommy and Li, Jianing and Li, Michael and Lebaredian, Rev},
title = {Kaolin: A Pytorch Library for Accelerating 3D Deep Learning Research},
year = {2022},
howpublished={\url{https://github.com/NVIDIAGameWorks/kaolin}}
}
```
## Contributors
Current Team:
- Technical Lead: Clement Fuji Tsang
- Manager: Maria (Masha) Shugrina
- Charles Loop
- Or Perel
- Alexander Zook
Other Majors Contributors:
- Wenzheng Chen
- Sanja Fidler
- Jun Gao
- Jason Gorski
- Jean-Francois Lafleche
- Rev Lebaredian
- Jianing Li
- Michael Li
- Krishna Murthy Jatavallabhula
- Artem Rozantsev
- Tianchang (Frank) Shen
- Edward Smith
- Gavriel State
- Towaki Takikawa
- Jiehan Wang
- Tommy Xiang